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ABSTRACT 
Assisting users with To Do lists presents new challenges for 
intelligent user interfaces. This paper presents our approach 
and an implemented system, BEAM, to process To Do list 
entries and map them to tasks that can be automated for the 
user.  The system then monitors the progress of the 
execution of those tasks and processes their completion.  
We use a novel approach to interpreting natural language 
tasks that exploits semi-formal knowledge repositories 
collected from web volunteers, which are broad-coverage 
and continuously increase in size at zero cost. An important 
aspect of our research is that it has been heavily influenced 
by an office assistant architecture that learns continuously 
to assist the user with new tasks. 

Author Keywords 
User interfaces, to-do lists, automated assistance, natural 
language interpretation, knowledge acquisition, knowledge 
collection from web volunteers, office assistants. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
To Do lists are ubiquitous, whether in our handheld 
organizers, desktops, or in the traditional form of lists on 
paper and sticky notes.  From a user perspective, To Do 
lists can be viewed as “entry points” that suggest to the user 
to engage in the tasks therein, often carrying information 
about deadlines and importance level [Kirsh 2001].  Studies 
have shown that To Do lists are the most popular personal 
information management tools (used more than calendars, 
contact lists, etc.), used by more than 60% of people 
consulted [Jones and Thomas 1997].  To Do lists are 
external artifacts that augment human cognition in that they 
serve as memory enhancers by reminding people of what 
needs to be done.  Norman [Norman 1991] points out that 
such external artifacts often transform the tasks that users 
do into new sets of tasks.  He uses To-Do lists to illustrate 
this, pointing out that although they are indeed helpful as 
memory enhancers they require that the user repeatedly 
construct, consult, and interpret To Do entries.  Norman 
clearly views these as onerous additional tasks that do not 
help the user with their original task entered into the list.   

We see an immense and largely unexplored opportunity for 
intelligent assistance in automatically interpreting, 
managing, automating, and in general assisting users with 
their To Do lists.  This opportunity presents important 
challenges to intelligent user interface research.  
Interpreting To Do lists requires natural language (NL) 
processing and interpretation that, as we argue in this paper, 
requires new research. To Do lists also require developing 
intelligent assistants that can exploit those interpretations to 
act, anticipate, and learn to expand their skills over time.  
Another important aspect is the design of cognitively 
appropriate interactions and presentations for To Do lists 
that make users more effective at their tasks and even at 
introducing better habits. This latter aspect is not addressed 
in our work, but has been the focus of user studies of To Do 
list best use practices, problems, and desiderata [Bellotti et 
al 2004; Bellotti et al 2003; Hayes et al 2003]. 
Our initial work on providing intelligent assistance for To 
Do list management is part of a larger project to develop 
intelligent assistants for office-related tasks 
(www.sri.com/calo).  As part of this project, a plan 
execution engine is available to us to act upon and to 
monitor tasks for users [Myers et al 2006] as well as a 
calendar management system [Berry et al 2005] and an 
instrumented desktop [Cheyer et al 2005].  An important 
and novel aspect of this project is that the system does not 
have a pre-defined set of tasks that it can automate; rather, 
it is continuously learning autonomously and from users 
(e.g., [Shen, Dietterich & Herlocker, 2005; Mitchell et al 
2006; Blythe 2005]).  Therefore, users would expect the To 
Do list manager to handle any new tasks learned by the 
system.  Our work to date has been in bridging the gap 
between the actionable tasks that the system could perform 
and the informal To Do lists of users, and in learning to 
map new tasks as the underlying execution system learns 
them. Our implemented system, BEAM, has only an initial 
set of the To Do list management capabilities but it is fully 
integrated with an end-to-end execution and monitoring 
system and will be extended in the coming year with 
additional functionality.  While we do not present 
experimental results in this paper, the overall system is 
undergoing a formal evaluation with several dozen users 
during September and October of 2006. 
In this paper, we outline a research agenda for this new 
area, discuss the challenges that we decided to tackle, the 
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approach we took, the architecture and components of the 
system, and the system’s integration within the larger 
architecture.  We end by discussing forthcoming prospects 
and planned research. 

INTELLIGENT ASSISTANCE FOR TO DO LISTS  
We are interested in developing an intelligent office 
assistant that can assist users with their tasks using To Do 
lists as primary method of communication.  The system 
should be proactive in identifying assistance opportunities 
and anticipating possible tasks which the user may not have 
mentioned. Various forms of assistance include: 
• Act on the To Do list. This entails mapping entries to 

the automated tasks which the system can carry out on 
behalf of the user. To launch the appropriate automated 
task, the system needs to both correctly identify the 
appropriate task and bind the relevant arguments to the 
parameters of its internal task description. To Do list 
entries, however, can be notoriously incomplete, since 
users may simply jot them as reminders.  Therefore the 
mapping problem is challenging since it will typically 
be underconstrained. 

• Monitor the To Do list. An entry on the list may 
become completed or cancelled: for instance, a 
conference room booking may get automatically 
carried out, or a planned interview may get cancelled. 
In such cases, the system can monitor update the To Do 
list, marking its entries as completed or canceled as 
appropriate. 

• Augment the To Do list. Given an entry, the system 
could suggest additional preparatory tasks and sub-
tasks which are not on the To Do list. For instance, 
given a To Do entry “host a visitor”, the system could 
suggest the substep of reserving a hotel room for the 
visitor, for which automated assistance can be provided 
to the user.  Another form of augmentation is the 
extension of individual entries with additional 
information, eg, the visit’s date, if such is available in 
the larger system. 

• Organize To Do list entries.  The system could 
organize the list and group entries by different activity 
threads, organizing and grouping the tasks entered by 
the user as well as the tasks added by the system.  For 
example, the system may group the items which are 
related to hosting a specific visitor. 

• Prioritize To Do list entries.  Over time, tasks that have 
an associated date or deadline become more pressing.  
In addition, there may be time constraints on the 
advance execution of preparatory tasks, which if not 
accomplished would delay the To Do list entry target 
date or altogether render it impossible.   

• Coordinate To Do lists across users in an organization.  
Many user tasks are collaborative, presenting 
opportunities for coordination.  For example, if the user 
meets regularly with several others, it is possible that 

one of them usually takes the initiative to set up the 
meeting time and therefore the user does not have to.   

• Assist users with organization practices. This aspect of 
assistance is to help new users understand practices 
within the organization, or help users keep up with 
changes in practices.  For instance, taking time off may 
require filing specific paperwork, or travel 
arrangements may be delegated to project assistants, 
depending on the particular organization. A system for 
interpreting To Do lists may be able to advise the user 
and act accordingly. 

In our work, we concentrate on the first two: acting on To 
Do list entries to carry them out automatically, and 
monitoring their execution in order to alert the user about 
their ongoing status and successful completion. 

NEW CHALLENGES 
The task of interpreting the user entries has relevant 
research in speech systems and dialogue natural language 
interfaces which allow users to query databases or assist 
them with performing tasks [Seneff, 1992; Glass et al, 
2004; Allen et al, 1995, 1996, 2001]. As in those systems, 
interpreting To Do list entries involves mapping the surface 
text used in the user’s utterance into the set of tasks for 
which the system has automated procedures.  Typically, the 
approach taken is to pre-enumerate the set of tasks that the 
system can perform, to collect a corpus of utterances for 
those tasks, and to develop a grammar that is used to map 
user utterances into the internal task representation.  This 
mapping grammar is typically developed by hand, although 
recent research begins to address the issue of learning some 
aspects of these grammars and mappings automatically 
[Wang & Acero 2001, 2002; Chung et al, 2005]. In our 
work, we build on the semantic grammar approaches in 
automatic interpretation of user utterances, as well as on the 
approach which collects paraphrases from users to extend 
the set of statements which can be interpreted [Gavalda & 
Waibel, 1998; Chklovski 2005].  However, interpreting To 
Do list entries presents important new challenges. 
To Do list entries are often very minimal or cryptic (e.g., 
“Jack”).  In these cases their mapping is more challenging 
and their intent has to be inferred. In our work, since it is in 
initial stages, we assume that To Do list entries are 
specified as an action followed by some optional arguments 
and constraints, much in the spirit of a case frame [Fillmore 
1969].  The mapping and interpretation of the entry is still 
challenging, since the specification of the action and the 
arguments are not fixed and can have variations: “form 
/make/set up/pull together/get together/identify/id a lunch 
group”, and “hotel, place to stay, hotel room, 
accommodation, Marriott, motel”. We believe this is a 
reasonable assumption based on an analysis of realistic To 
Do data (public Ta Da lists, www.tadalist.com/lists/select) 
and people’s goal statements (on www.43things.com). 
Although we acknowledge that To Do entries are 
sometimes stated more cryptically, we observed that they 
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often conform to our assumption. It is possible that users 
may adopt our required format, since users commonly adapt 
after interacting with computers or other humans that use 
different vocabularies and languages than their own 
[Zoltan-Ford 1991; Ringle and Halstead-Nussloch 1989].  
We provide a mechanism in the interface to allow users to 
see what portions of their To Do list entries are understood 
by the system.  If our assumption is not desirable for users, 
our plan is to develop techniques that learn to manage 
minimally specified To Do entries after watching user 
abbreviation practices for some period of time. 
Another important challenge is that To Do entries may be 
stated at a much higher level than the task that is known 
to the system.  For example, the entry may be “Define 
project goals with Jack” and the system may only be able to 
help with the task of setting up a meeting with that person. 
In speech systems and other NL-based interfaces the user’s 
utterances always need to be mapped to a pre-defined set of 
tasks (travel arrangements, phone menu navigation, etc).  In 
our case, the task that the system knows how to do may be 
very small and tangential the To Do entry itself, but it is 
very necessary, and burdensome, and is so totally obvious 
and repetitive that the user would expect an intelligent 
assistant to be able to anticipate and handle. How can the 
system figure out that defining project goals with a person 
involves setting up a meeting? 
An important new challenge is that To Do lists will contain 
entries that are not relevant to the system’s intended 
assistance.  The system should be able to determine which 
entries are outside of its known responsibility areas and 
with which it cannot assist the user. In speech systems and 
other NL-based interfaces the user’s utterances are relevant 
to the task at hand, a reasonable assumption given the 
context of their use.  To Do lists present an additional 
challenge for users that naturally keep a single To Do list 
that does not separate their personal from their office tasks.  
For example, the list may contain an entry to do a budget or 
to get bread on the way home, which is not the kind of task 
that the system is concerned with. How can the system 
figure out that buying bread on the way home is not a task 
one does at the office? 
Another challenge is that users will prefer no action than 
incorrect or burdensome assistance.  Speech and NL 
systems must try to interpret users’ utterances before the 
dialogue may proceed.  User’s expectations for To Do list 
assistants, at least at this point in time, will be that they help 
when possible but are not required to assist with every To 
Do entry thoroughly. If the system cannot interpret an 
entry, or if it believes its interpretation or mappings of the 
entry are not likely correct, then it should give up on that 
entry and not attempt any assistance.  How will the system 
determine when to give up trying to assist the user with a 
To Do entry? 
Finally, a challenge we face is that the underlying system 
that will be continuously expanding its capabilities in 
terms of the kinds of tasks it can do for the user.  Speech 

systems and other NL-based interfaces target a pre-defined 
set of tasks.  In our case, the set of tasks is ever expanding.  
If the system is extended (or learns on its own) to purchase 
books through the Internet, how can it identify occurrences 
of book purchasing or related tasks in a To Do list? 
In summary, new challenges involved in developing an 
approach to interpret To Do list items include: 1) anticipate 
the preparatory or minor tasks which are involved in 
accomplishing the user’s stated task; 2) determine which 
tasks are proper to an office environment and which are 
within the realm of the system’s assistance and which are 
not; 3) determine when automation is desirable; and 4) add 
and extend the mappings between user utterances and new 
internal task representations learned by the system over 
time. 

APPROACH 
Our approach is to exploit semi-structured repositories of 
common knowledge that have broad coverage and are 
continuously extended at zero cost.  We obtain common 
knowledge about tasks from two main sources: volunteer 
contributors over the web (or within the organization), and 
text extraction from on-line corpora.  These repositories 
have broad coverage of the topics and tasks of relevance, 
since they include knowledge about common tasks and in 
some cases have more dense coverage of office tasks in 
particular.  The repositories are semi-formal because they 
are formed by normalizing and relating English statements 
provided by web volunteers or that appear in text 
documents.  In prior work, we developed techniques to 
guide collection from volunteers, to expand coverage, to 
process and relate the contributed statements, and to 
validate the knowledge collected [Chklovski & Gil, 2005; 
Chklovski 2003, 2005]. 
Figure 1 shows an overview of the overall functionality of 
BEAM and the knowledge sources it uses.  We indicate 
with regular lines the portions of the system that have been 
developed and integrated, with dotted lines the knowledge 
sources that have been developed but are not yet exploited 
in BEAM’s capabilities, and with dashed lines the 
capabilities that are not yet implemented but which we 
anticipate we will be able to develop within this framework. 
We note that some of the components shown have been 
developed by others, namely the ontologies and facts, the 
task catalog, the execution and monitoring system, the 
calendar scheduling system, the instrumented desktop, and 
task and concept learning components [Myers et al 2006; 
Cheyer et al 2005; Berry et al 2005; Shen, Dietterich & 
Herlocker, 2005; Blythe 2005].  We also note that there are 
many other components being developed and integrated 
within the overall project that are not directly relevant to 
this work and are not mentioned here (more can be found at 
www.sri.com/calo). 
The knowledge sources for BEAM include semi-formal 
repositories of broad knowledge that we created, as well as 
formal ontologies and task catalogs that were engineered 
and are directly relevant to the office tasks. The type, 
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collection, and structure of the semi-formal repositories was 

guided by the kinds of To Do list processing that we 
currently do or that we envision doing in the near future. 
The Action Paraphrases Repository contains thousands of 
paraphrases collected from volunteers [Chklovski 2005; 
Chklovski & Gil 2005]; the repository includes several 
hundred paraphrases which were specifically collected to 
target office- and assistant-related tasks, including: “plan a 
visit  schedule a visit”, “arrange a meeting  schedule a 
meeting”, “lease a car  rent a car”. The Substeps 
Repository contains knowledge such as “attending a 
conference has-substep registering for the conference”, and 
“go to meeting has-substep find location of  meeting”, and 
the sometimes true “have lunch has-substep buy food”. 
This repository is based on data collected by OMCS [Singh 
et al, 2002] and Learner [Chklovski, 2003]. The Repairs 
Repository contains thousands of statements about objects, 
their typical uses, and their parts, as well as a smaller set of 
statements about repairing difficulties one may encounter in 
the office environment, such as “if projector is not working, 
try a new bulb” [Chklovski & Gil, 2005]. Such knowledge 
can be of help in interpreting To Do entries which refer to 
problems, or to action on office objects or their parts. The 
Verb Relations repository, VerbOcean [Chklovski & Pantel 
2004, 2005], contains more than 22,000 instances of 
relations between nearly 3,500 distinct verbs, including 
“schedule happens-before reschedule”, and “cancel 
stronger-than postpone”. Such relations can be useful in 
identifying potentially related To Do entries and their 
subtasks. 
BEAM also exploits ontologies and factual knowledge 
bases that represent formally all the terms that the system 
understands.  The tasks that the system knows how to 

automate are described in a Procedures Catalog, which 

states the action type, the argument slots required for each 
procedure, and constraints on types of the acceptable slot 
values. For instance, a hotel reservation task may have as 
slots the guest name the start and end dates of the stay. 

 
Figure 1. Overview of the overall functionality of BEAM and the knowledge sources that it uses.  Dotted lines indicate 
knowledge sources already developed but not yet used by BEAM.  Dashed lines indicate capabilities not yet developed. 

To Do entries may not be actionable as they are stated, and 
BEAM has the challenge of mapping entries with 
incomplete arguments.  For instance, arranging a lunch may 
require specifying for how many people; announcing a talk 
by a visitor may require the talk title and date. In these 
cases, further interaction with the user is required to elicit 
the additional parameters before action can be taken. 

USER INTERFACE FOR TO DO LISTS 
Figure 2 shows some examples of To Do list entries in the 
BEAM user interface.  Note that, as we mentioned earlier, 
we make the assumption that To Do list entries have a verb 
header followed by arguments and constraints. 

  
Figure 2. Screenshot of BEAM’s To Do List 

The To Do list items shown include: an entry that can be 
fully interpreted by the system, “schedule a meeting about 
Pexa during lunch,” or “calculate costs for project,” entries 
that can only be partially interpreted by the system, “print 
Q1 market share report,” “gather the revenue numbers,” and 
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entries which cannot be interpreted by the system,  
“presentation for the User Conference,” and 
“install/reinstall accounting package.” 
The first two entries, “schedule a meeting about Pexa 
during lunch,” and “calculate costs for project” can be fully 
interpreted because they use vocabulary covered by BEAM 
and they conform to BEAM’s syntactic expectations. 
The entries “print Q1 market share report” and “gather the 
revenue numbers” can only be partially interpreted: while 
BEAM interprets the action stated – print a document and 
gather information, BEAM is not able to process in any 
depth the entities that are the arguments of these actions – 
what needs to be printed or gathered. In the case of “gather 
the latest revenue numbers,” BEAM’s syntactic analysis 
does yield that latest is an adjective modifying “revenue 
numbers”, but no interpretation (mapping to a semantic 
concept) is found for “revenue numbers”. 
The final entries cannot be interpreted because they do not 
conform to BEAM’s expectations about the input: 
“presentation for the User Conference” is not in the form of 
a verb with additional arguments, while “install/reinstall ac-
counting package” refers to multiple actions, and mentions 
“accounting package” which has no interpretation. 
Figure 3 shows an option of the BEAM interface which, 
when activated, allows users to see the portions of each To 
Do list entry that the system can interpret.  This is a useful 
feature, as studies have shown that humans adapt to the 
vocabulary of another human or that of a system even if it is 
different from their own.  Our expectation is that this 
feature will train users to stay away from using the terms 
and grammatical structures which the system cannot 
interpret. With this option enabled, BEAM’s processing 
into the action and the arguments is displayed – eg, the first 
entry is broken up into the action (schedule) and three 
arguments. Also, all identified action and entity expressions 
are bolded (eg, meeting, Pexa, lunch), while other lexical 
items are not (eg., about, during, latest). The bolded entities 
are further color-coded to indicate the interpreted actions 
(schedule, calculate, print and gather), and entities 
(meeting, Pexa, lunch, costs and project).  

 
Figure 3. Screenshot of BEAM’s To Do List Showing the User 
Recognized and Unrecognized Text Fragments 

Figures 4 through 7 shows several aspects of the user 
interface that was developed to integrate BEAM with the 
execution and monitoring system (the system is described 
in detail in [Myers et al 2006]). Figure 4a shows the To Do 
list with several items. The last two items have been 
completed and are shown with checkmarks and in italics. 
The actions for which automated assistance was invoked 

are marked with a “C” icon (for CALO, the automated 
cognitive assistant). The third item, “plan conference 
travel” has been mapped to an existing capability of the 
assistant, and is being carried out. The To Do list monitors 
and indicates its status. 

 
Figure 4. A To Do interface integrating BEAM and providing 

task interpretation and monitoring. 

Carrying out the action may require a number of steps by 
the execution and monitoring system. The user can interact 
with the assistant in the execution and monitoring system, 
eg, to query it about the assistant is currently working on. 
This is illustrated in Figure 5. 

 
Figure 5. Execution and monitoring system interacting with 
the user about progress on task. 

In the case of planning conference travel, carrying out the 
action requires additional user interaction, including the 
entry of missing arguments about conference deadline, etc. 
The execution system can initiate additional interactions 
with the user; a form-based interaction about the conference 
details is illustrated in Figure 6. 
  

 5



 

 
Figure 6. As part of its interaction, additional parameters can 
be elicited from the user in the process of running the 
execution and monitoring procedure. 

Finally, once the task is successfully completed, the user 
can monitor this in the To Do interface. The automated task 
is displayed as completed, as shown in Figure 7. 

 
Figure 7. To Do list is automatically updated when the “Plan 
conference travel” action is completed. 

MAPPING AND INTERPRETING TO DO LIST ENTRIES 
Our approach progresses from syntactic to semantic 
interpretation, and leverages a number of broad-coverage 
knowledge sources. Our approach is informed by prior 
work in speech systems and dialogue systems [Wang & 
Acero, 2001, 2002; Seneff, 1992; Glass et al, 2004; Rich & 
Sidner 1997; Allen et al, 1995, 1996, 2001]. In particular, 
this work influenced the later stages of our processing, 
those concerned with mapping to semantic frames and task 
structures, while syntactic processing was incorporated as 
early processing to allow use of growing knowledge 
repositories and permit the system to function in the more 
dynamic learning conditions. 

Figure 8 presents an overview of the stages that we use to 
map and interpret To Do list entries.  There are seven 
distinct stages involved in this process. 
The first stage is syntactic parsing. For this stage, we rely 
on Minipar, a popular dependency parser [Lin, 1998]. 
Minipar fit our needs because it is able to produce linkages 
when text is incomplete. Using the parser in the first stage 
occasionally presents some issues. For instance, a single-
word entry “schedule” or “exercise” is interpreted as a 
noun, and the system is unable to interpret the entry, while 
longer entries such as “schedule a phone call” or “exercise 
on Tuesday” do get parsed appropriately. 
The second stage is to identify semantic components in the 
user utterance. This stage includes identifying which strings 
express the action, the parameters, and the constraints in the 
To Do entry. We have developed a set of heuristics to 
process the somewhat idiosyncratic syntax of To Do 
entries. An entry such as “calculate costs for project” is 
processed into its semantic components: [calculate] [costs] 
[for project], consisting of the action, (“calculate”) and the 
phrases, each containing an entity. The direct object of the 
action (eg. “costs” in the above example) is, for the sake of 
our processing, a phrase with the sole entity, cost. The 
entities are mapped to their basic form (for “costs”, to the 
singular noun “cost”) by the parser in the previous stage. 
The final component is a prepositional phrase, with the 
entity being “project”. The entity is identified as the head 
noun of the phrase and its nominal (but not adjectival) 
modifiers, so given, for instance, the input phrase “for 
urgent sales meeting”, the entity identified is “sales 
meeting”. 
The third stage is the lookup of known semantic 
components in the ontology. The ontology for actions 
consists of 85 tasks such as Buy, Learn, Obtain Data, Print. 
The action from the To Do list (eg, reserve), if found, is 
matched against these terms, trying both a direct match and 
a match using synonyms from WordNet (Fellbaum, 1990). 
The use of synonyms allows mapping of, e.g., the string 
“purchase” to the concept Buy. The ontology’s set of 
concepts for entities is larger, containing more than 500 
concepts, including Breakfast, Bridge, Brunch, Building, 
Calendar, Chair, Contact Information, etc. Again, 
alignment with these concepts is carried out by attempting 
both a literal and a synonym-based match. 
The components which are in the execution assistant’s 
ontology are identified. Semantic components which cannot 
be interpreted are passed for interpretation to the next stage.  
The fourth stage is the semantic interpretation of out-of-
ontology entities. This stage attempts to map terms not in 
the execution assistant’s ontology to categories which are in 
the ontology. For instance, the ontology may not contain 
the concept of accounting package, but if the constantly 
learning, broad-coverage zero-cost repositories map 
“accounting package” to “software,” then tasks such as 
“install accounting package” or “order accounting package” 
can be fully interpreted. Currently, only a small set of 
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concepts is available to this stage, and we plan to use much 
larger repositories in this process. Similarly, if a new task is 
learned by the execution assistant, little may be known 
about it in the execution assistant’s ontology, and this stage 
can be of help in coping with mapping of additional 
concepts. 

 
Figure 8. BEAM’s To Do List Interpretation Steps and 
Knowledge Sources. 

The fifth stage is the mapping to semantic frames, in which 
the semantic categories of the action and the entities are 
used to evoke the potentially matching semantic frames and 
see if the arguments are appropriate for this semantic frame.  
If the statement could not be mapped to a semantic frame, 
the system checks if it is possible to rewrite the entry to a 
paraphrase or subtask, as explained below. If not, the 
system stops processing this statement. Recall that an 
important aspect of our domain is that not all entries may 
need to be interpreted by the system: the user may include 
entries not done at the office, such as picking up bread on 
the way home. However, if rewriting knowledge is 
available, the system attempts to interpret the statement by 
rewriting it. 
The entry-rewriting knowledge in the current version of 
BEAM is constantly growing, and it currently allows 
rewriting of some actions to enable their interpretation. For 
instance the action “move” when the object is “meeting” is 
known as a paraphrase of “reschedule” a “meeting”. A 
rewrite expression does not have to match literally – the 
entry being rewritten may have additional phrases, which 
are carried through. 

Due to our method of collecting rewriting knowledge, we 
can in some cases be highly confident in the correctness and 
interpretability of the rewriting. In such cases, BEAM 
rewrites matching statements even before stage 1 of 
syntactic parsing. Such “aggressive rewriting” can help 
avoid incorrect semantic interpretation of the original 
statement. It can also serve as canonicalization of text 
before parsing it, for instance rewriting “w/” to “with”. 
If the mapping to semantic frame in stage five succeeded, 
BEAM proceeds to the seventh (final) stage of the mapping 
from semantic frames to task procedures.  The semantic 
frames are aligned with task procedures. In mapping to task 
procedures, not that the user entry may not provide all the 
needed arguments, and additional interaction or learning 
may be required to identify the values of the unstated 
arguments. 

ACTIVATING AND MONITORING TO DO ENTRIES ON 
BEHALF OF THE USER  
The Procedure Catalog is BEAM’s main entry point to the 
rest of the system.  The catalog contains a description of all 
the tasks that other components in the system can 
accomplish for the user.  It is organized as a task ontology, 
and a complete set of the parameters required for each task 
is given in terms of the system’s ontologies of objects and 
classes.  BEAM is integrated with the task ontology in the 
sense that it aims to produce mappings to any of the tasks 
described in it.  However, we have focused to date on the 
kinds of tasks automated by the Spark execution and 
monitoring system [Morley & Myers, 2004].  Examples of 
these tasks are “Schedule a meeting,” “Reschedule a 
meeting,” “Create an agenda,” “Plan conference travel,” 
“Register for conference,” and “Apply for reimbursement.” 
Once BEAM has mapped a To Do list entry, it notifies the 
user that it intends to act upon it to automate it.  Then it 
sends the partially instantiated request to perform that task 
to Spark, which then asks the user for additional 
information and parameters that do not appear in the entry 
itself.  BEAM also requests that Spark notifies it when the 
task is completed. 
Spark can monitor the progress in completing a task once it 
is started.  It has a Belief-Desire-Intention (BDI) 
architecture that is continuously sensing its environment 
and updating its beliefs accordingly.  As a result, Spark can 
incorporate into its reasoning the effects of actions taken by 
other users or any other events registered in the system.  
This enables it to detect the completion of a task by external 
means, as well as suspending and canceling tasks that are 
no longer desirable.  BEAM is notified when a task that it 
activates on behalf of the user is completed, suspended, or 
cancelled. 
In the coming months we envision extending this 
integration more tightly with other components of the 
system that can accomplish tasks and that already have 
representations in the task ontology, including a calendar 
manager [Berry et al 2006] and an instrumented desktop 
[Cheyer et al 2005] that includes email parsing and sending 
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capabilities.  The task ontology continues to grow 
automatically as end users teach new tasks to the system or 
as the system learns on its own to automate repetitive tasks. 

USER EVALUATIONS: PERFORMANCE WATERMARKS  
While we do not present conclusive experimental results in 
this paper, the overall system is undergoing a formal 
evaluation with several dozen users during September and 
October of 2006.  The purpose of these evaluations is to test 
the learning capabilities of the overall system as it is used 
“in the wild” by several dozens of users.   In the case of 
BEAM, the goal was to obtain initial data about the 
performance of the system, so we can compare it with next 
year’s capabilities and demonstrate improvements.  In fact, 
neither the knowledge repositories nor the Procedures 
Catalog are at the levels of content and coverage that we 
would want to see in order to conduct more conclusive 
evaluations of the effectiveness of the system.  In any case, 
BEAM is integrated and already attempting to interpret and 
assist on every To Do list entry.  It is fully instrumented, 
and all the data that is being collected will inform our future 
research. 
BEAM is being evaluated in two experimental conditions.  
The first, BEAM-Baseline, does not use automatic 
rewriting and simply attempts to map To Do entries to the 
Procedures Catalog. The second, BEAM-Learning, has the 
functionality of the baseline system but it also performs 
automatic rewriting based on the paraphrasing knowledge 
that is learned from volunteers.   
In the data that we have seen so far, BEAM was used on 
440 statements.  Without rewriting (BEAM-Baseline), a 
mapping was found 23.1% of the cases. With rewriting 
(BEAM-Learning), a mapping was found in 27.7% of the 
cases.  Although this already shows improvement, in our 
case the purpose of the evaluations being conducted is to set 
the watermark based on the initial capabilities of BEAM 
and its integration within the overall system.  

CONCLUSIONS AND FUTURE WORK 
Assisting users with To Do lists is a new and challenging 
research area for intelligent user interfaces.  We outlined 
the various kinds of intelligent assistance obtainable 
through To Do list entry interpretation and automation, 
including acting on entries and reporting on their 
completion, adding new entries for anticipated subtasks, 
grouping and prioritizing entries, and coordinating To Do 
lists for joint activities across users.  The central 
contribution of our work is an implemented system, BEAM, 
which processes To Do list entries and maps them to tasks 
that a system can automate for the user.  The system then 
monitors the progress of the execution of those tasks and 
updates the To Do list when completed.  Because To Do 
lists can cover many topics and tasks that may not be 
formalized in the underlying system, we use a novel 
approach to interpreting natural language tasks that exploits 
semi-formal knowledge repositories that are broad coverage 
and continuously increasing in size at zero cost.  These 
repositories are populated with common knowledge by web 

volunteers and by automatic text extraction.  BEAM has 
been fully integrated within a large system that implements 
various forms of assistance to users in office environments, 
and can execute and monitor To Do list tasks mapped by 
BEAM.  An important aspect of our research is that it has 
been heavily influenced by an office assistant architecture 
that learns to improve performance over time.  As a result, 
learning is a central feature of our approach. 
So far our work has focused on automating To Do list 
entries, but now that we have an implemented approach to 
interpret and map the To Do list entries we are very well 
positioned to undertake other kinds of assistance.  We plan 
to extend BEAM to learn additional types of information 
about tasks and improve its capabilities to assist users to 
manage To Do lists.  BEAM could anticipate “in-
preparation” tasks and suggest them, mark tasks as user-
only, and hypothesize groups of To Do entries that appear 
related.  BEAM would improve its performance in all these 
tasks through collecting and exploiting additional types of 
common knowledge about tasks from web volunteers.  So 
far, the task knowledge is collected and extracted off-line, 
but there is no reason why the system should not seek 
knowledge on-demand as it notices new and unknown To 
Do list items.   
We discussed earlier in detail the new challenges that we 
face with respect to existing approaches in natural language 
dialogue and speech systems, as we build on their work on 
semantic grammars.  An aspect we did not discuss is that 
these systems must also recognize and track the progress of 
a task during successive interactions with the user, and be 
flexible regarding which tasks the user undertakes and 
which tasks are left to the system [Rich & Sidner 1997, 
Allen et al 1995, Rudnicky et al 1999].  The overall task 
structure is represented formally in various forms: scripts, 
task hierarchies, or intentional structures (SharedPlans).  
The goal of the system is to complete as much of the task 
requirements as the prior dialogue permits.  To date, we 
treat To Do entries as not related and their progress is 
monitored separately.  Tracking dialogue over time and 
overall task progress have not been an issue, but we noted 
grouping of tasks as a challenge early in the paper.  The 
approaches developed for dialogue and collaborative 
systems would provide a valuable framework for work in 
this direction. 
To Do list assistance could greatly benefit from a larger 
body of work in user interfaces on utility estimation of user 
interaction and various approaches to adjustable autonomy 
[Horwitz et al 1999; Maheswaran et al 2004].  There are 
interesting opportunities for learning about appropriate user 
interactions, about the types of assistance that are always 
declined or that certain users have a much higher threshold 
for accepting assistance.  
We would also like to incorporate useful design criteria 
suggested by user studies in cognitive psychology and 
human factors regarding To Do lists.  It would be useful to 
integrate the To Do list functionality with calendar and 
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email systems and automatically extract from them To Do 
list entries as well as notice completed ones as the user 
informs others or manipulates their calendar.  Automatic 
spotting and interpretation of user task statements and To 
Do entries can play an important role in the future of better 
integrated, more helpful office assistants. 
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