
Enhancing Interaction with To-Do Lists
Using Artificial Assistants

Yolanda Gil, Timothy Chklovski
USC Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292
{gil, timc}@isi.edu

ABSTRACT
Assisting users with To Do lists presents new challenges for
intelligent user interfaces. This paper presents our approach
and an implemented system, BEAM, to process To Do list
entries and map them to tasks that can be automated for the
user. The system then monitors the progress of the
execution of those tasks and processes their completion.
We use a novel approach to interpreting natural language
tasks that exploits semi-formal knowledge repositories
collected from web volunteers, which are broad-coverage
and continuously increase in size at zero cost. An important
aspect of our research is that it has been heavily influenced
by an office assistant architecture that learns continuously
to assist the user with new tasks.

Author Keywords
User interfaces, to-do lists, automated assistance, natural
language interpretation, knowledge acquisition, knowledge
collection from web volunteers, office assistants.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
To Do lists are ubiquitous, whether in our handheld
organizers, desktops, or in the traditional form of lists on
paper and sticky notes. From a user perspective, To Do
lists can be viewed as “entry points” that suggest to the user
to engage in the tasks therein, often carrying information
about deadlines and importance level [Kirsh 2001]. Studies
have shown that To Do lists are the most popular personal
information management tools (used more than calendars,
contact lists, etc.), used by more than 60% of people
consulted [Jones and Thomas 1997]. To Do lists are
external artifacts that augment human cognition in that they
serve as memory enhancers by reminding people of what
needs to be done. Norman [Norman 1991] points out that
such external artifacts often transform the tasks that users
do into new sets of tasks. He uses To-Do lists to illustrate
this, pointing out that although they are indeed helpful as
memory enhancers they require that the user repeatedly
construct, consult, and interpret To Do entries. Norman
clearly views these as onerous additional tasks that do not
help the user with their original task entered into the list.

We see an immense and largely unexplored opportunity for
intelligent assistance in automatically interpreting,
managing, automating, and in general assisting users with
their To Do lists. This opportunity presents important
challenges to intelligent user interface research.
Interpreting To Do lists requires natural language (NL)
processing and interpretation that, as we argue in this paper,
requires new research. To Do lists also require developing
intelligent assistants that can exploit those interpretations to
act, anticipate, and learn to expand their skills over time.
Another important aspect is the design of cognitively
appropriate interactions and presentations for To Do lists
that make users more effective at their tasks and even at
introducing better habits. This latter aspect is not addressed
in our work, but has been the focus of user studies of To Do
list best use practices, problems, and desiderata [Bellotti et
al 2004; Bellotti et al 2003; Hayes et al 2003].
Our initial work on providing intelligent assistance for To
Do list management is part of a larger project to develop
intelligent assistants for office-related tasks
(www.sri.com/calo). As part of this project, a plan
execution engine is available to us to act upon and to
monitor tasks for users [Myers et al 2006] as well as a
calendar management system [Berry et al 2005] and an
instrumented desktop [Cheyer et al 2005]. An important
and novel aspect of this project is that the system does not
have a pre-defined set of tasks that it can automate; rather,
it is continuously learning autonomously and from users
(e.g., [Shen, Dietterich & Herlocker, 2005; Mitchell et al
2006; Blythe 2005]). Therefore, users would expect the To
Do list manager to handle any new tasks learned by the
system. Our work to date has been in bridging the gap
between the actionable tasks that the system could perform
and the informal To Do lists of users, and in learning to
map new tasks as the underlying execution system learns
them. Our implemented system, BEAM, has only an initial
set of the To Do list management capabilities but it is fully
integrated with an end-to-end execution and monitoring
system and will be extended in the coming year with
additional functionality. While we do not present
experimental results in this paper, the overall system is
undergoing a formal evaluation with several dozen users
during September and October of 2006.
In this paper, we outline a research agenda for this new
area, discuss the challenges that we decided to tackle, the

 1

http://www.sri.com/calo

approach we took, the architecture and components of the
system, and the system’s integration within the larger
architecture. We end by discussing forthcoming prospects
and planned research.

INTELLIGENT ASSISTANCE FOR TO DO LISTS
We are interested in developing an intelligent office
assistant that can assist users with their tasks using To Do
lists as primary method of communication. The system
should be proactive in identifying assistance opportunities
and anticipating possible tasks which the user may not have
mentioned. Various forms of assistance include:
• Act on the To Do list. This entails mapping entries to

the automated tasks which the system can carry out on
behalf of the user. To launch the appropriate automated
task, the system needs to both correctly identify the
appropriate task and bind the relevant arguments to the
parameters of its internal task description. To Do list
entries, however, can be notoriously incomplete, since
users may simply jot them as reminders. Therefore the
mapping problem is challenging since it will typically
be underconstrained.

• Monitor the To Do list. An entry on the list may
become completed or cancelled: for instance, a
conference room booking may get automatically
carried out, or a planned interview may get cancelled.
In such cases, the system can monitor update the To Do
list, marking its entries as completed or canceled as
appropriate.

• Augment the To Do list. Given an entry, the system
could suggest additional preparatory tasks and sub-
tasks which are not on the To Do list. For instance,
given a To Do entry “host a visitor”, the system could
suggest the substep of reserving a hotel room for the
visitor, for which automated assistance can be provided
to the user. Another form of augmentation is the
extension of individual entries with additional
information, eg, the visit’s date, if such is available in
the larger system.

• Organize To Do list entries. The system could
organize the list and group entries by different activity
threads, organizing and grouping the tasks entered by
the user as well as the tasks added by the system. For
example, the system may group the items which are
related to hosting a specific visitor.

• Prioritize To Do list entries. Over time, tasks that have
an associated date or deadline become more pressing.
In addition, there may be time constraints on the
advance execution of preparatory tasks, which if not
accomplished would delay the To Do list entry target
date or altogether render it impossible.

• Coordinate To Do lists across users in an organization.
Many user tasks are collaborative, presenting
opportunities for coordination. For example, if the user
meets regularly with several others, it is possible that

one of them usually takes the initiative to set up the
meeting time and therefore the user does not have to.

• Assist users with organization practices. This aspect of
assistance is to help new users understand practices
within the organization, or help users keep up with
changes in practices. For instance, taking time off may
require filing specific paperwork, or travel
arrangements may be delegated to project assistants,
depending on the particular organization. A system for
interpreting To Do lists may be able to advise the user
and act accordingly.

In our work, we concentrate on the first two: acting on To
Do list entries to carry them out automatically, and
monitoring their execution in order to alert the user about
their ongoing status and successful completion.

NEW CHALLENGES
The task of interpreting the user entries has relevant
research in speech systems and dialogue natural language
interfaces which allow users to query databases or assist
them with performing tasks [Seneff, 1992; Glass et al,
2004; Allen et al, 1995, 1996, 2001]. As in those systems,
interpreting To Do list entries involves mapping the surface
text used in the user’s utterance into the set of tasks for
which the system has automated procedures. Typically, the
approach taken is to pre-enumerate the set of tasks that the
system can perform, to collect a corpus of utterances for
those tasks, and to develop a grammar that is used to map
user utterances into the internal task representation. This
mapping grammar is typically developed by hand, although
recent research begins to address the issue of learning some
aspects of these grammars and mappings automatically
[Wang & Acero 2001, 2002; Chung et al, 2005]. In our
work, we build on the semantic grammar approaches in
automatic interpretation of user utterances, as well as on the
approach which collects paraphrases from users to extend
the set of statements which can be interpreted [Gavalda &
Waibel, 1998; Chklovski 2005]. However, interpreting To
Do list entries presents important new challenges.
To Do list entries are often very minimal or cryptic (e.g.,
“Jack”). In these cases their mapping is more challenging
and their intent has to be inferred. In our work, since it is in
initial stages, we assume that To Do list entries are
specified as an action followed by some optional arguments
and constraints, much in the spirit of a case frame [Fillmore
1969]. The mapping and interpretation of the entry is still
challenging, since the specification of the action and the
arguments are not fixed and can have variations: “form
/make/set up/pull together/get together/identify/id a lunch
group”, and “hotel, place to stay, hotel room,
accommodation, Marriott, motel”. We believe this is a
reasonable assumption based on an analysis of realistic To
Do data (public Ta Da lists, www.tadalist.com/lists/select)
and people’s goal statements (on www.43things.com).
Although we acknowledge that To Do entries are
sometimes stated more cryptically, we observed that they

 2

http://www.tadalist.com/lists/select
http://www.43things.com

often conform to our assumption. It is possible that users
may adopt our required format, since users commonly adapt
after interacting with computers or other humans that use
different vocabularies and languages than their own
[Zoltan-Ford 1991; Ringle and Halstead-Nussloch 1989].
We provide a mechanism in the interface to allow users to
see what portions of their To Do list entries are understood
by the system. If our assumption is not desirable for users,
our plan is to develop techniques that learn to manage
minimally specified To Do entries after watching user
abbreviation practices for some period of time.
Another important challenge is that To Do entries may be
stated at a much higher level than the task that is known
to the system. For example, the entry may be “Define
project goals with Jack” and the system may only be able to
help with the task of setting up a meeting with that person.
In speech systems and other NL-based interfaces the user’s
utterances always need to be mapped to a pre-defined set of
tasks (travel arrangements, phone menu navigation, etc). In
our case, the task that the system knows how to do may be
very small and tangential the To Do entry itself, but it is
very necessary, and burdensome, and is so totally obvious
and repetitive that the user would expect an intelligent
assistant to be able to anticipate and handle. How can the
system figure out that defining project goals with a person
involves setting up a meeting?
An important new challenge is that To Do lists will contain
entries that are not relevant to the system’s intended
assistance. The system should be able to determine which
entries are outside of its known responsibility areas and
with which it cannot assist the user. In speech systems and
other NL-based interfaces the user’s utterances are relevant
to the task at hand, a reasonable assumption given the
context of their use. To Do lists present an additional
challenge for users that naturally keep a single To Do list
that does not separate their personal from their office tasks.
For example, the list may contain an entry to do a budget or
to get bread on the way home, which is not the kind of task
that the system is concerned with. How can the system
figure out that buying bread on the way home is not a task
one does at the office?
Another challenge is that users will prefer no action than
incorrect or burdensome assistance. Speech and NL
systems must try to interpret users’ utterances before the
dialogue may proceed. User’s expectations for To Do list
assistants, at least at this point in time, will be that they help
when possible but are not required to assist with every To
Do entry thoroughly. If the system cannot interpret an
entry, or if it believes its interpretation or mappings of the
entry are not likely correct, then it should give up on that
entry and not attempt any assistance. How will the system
determine when to give up trying to assist the user with a
To Do entry?
Finally, a challenge we face is that the underlying system
that will be continuously expanding its capabilities in
terms of the kinds of tasks it can do for the user. Speech

systems and other NL-based interfaces target a pre-defined
set of tasks. In our case, the set of tasks is ever expanding.
If the system is extended (or learns on its own) to purchase
books through the Internet, how can it identify occurrences
of book purchasing or related tasks in a To Do list?
In summary, new challenges involved in developing an
approach to interpret To Do list items include: 1) anticipate
the preparatory or minor tasks which are involved in
accomplishing the user’s stated task; 2) determine which
tasks are proper to an office environment and which are
within the realm of the system’s assistance and which are
not; 3) determine when automation is desirable; and 4) add
and extend the mappings between user utterances and new
internal task representations learned by the system over
time.

APPROACH
Our approach is to exploit semi-structured repositories of
common knowledge that have broad coverage and are
continuously extended at zero cost. We obtain common
knowledge about tasks from two main sources: volunteer
contributors over the web (or within the organization), and
text extraction from on-line corpora. These repositories
have broad coverage of the topics and tasks of relevance,
since they include knowledge about common tasks and in
some cases have more dense coverage of office tasks in
particular. The repositories are semi-formal because they
are formed by normalizing and relating English statements
provided by web volunteers or that appear in text
documents. In prior work, we developed techniques to
guide collection from volunteers, to expand coverage, to
process and relate the contributed statements, and to
validate the knowledge collected [Chklovski & Gil, 2005;
Chklovski 2003, 2005].
Figure 1 shows an overview of the overall functionality of
BEAM and the knowledge sources it uses. We indicate
with regular lines the portions of the system that have been
developed and integrated, with dotted lines the knowledge
sources that have been developed but are not yet exploited
in BEAM’s capabilities, and with dashed lines the
capabilities that are not yet implemented but which we
anticipate we will be able to develop within this framework.
We note that some of the components shown have been
developed by others, namely the ontologies and facts, the
task catalog, the execution and monitoring system, the
calendar scheduling system, the instrumented desktop, and
task and concept learning components [Myers et al 2006;
Cheyer et al 2005; Berry et al 2005; Shen, Dietterich &
Herlocker, 2005; Blythe 2005]. We also note that there are
many other components being developed and integrated
within the overall project that are not directly relevant to
this work and are not mentioned here (more can be found at
www.sri.com/calo).
The knowledge sources for BEAM include semi-formal
repositories of broad knowledge that we created, as well as
formal ontologies and task catalogs that were engineered
and are directly relevant to the office tasks. The type,

 3

http://www.sri.com/calo

collection, and structure of the semi-formal repositories was

guided by the kinds of To Do list processing that we
currently do or that we envision doing in the near future.
The Action Paraphrases Repository contains thousands of
paraphrases collected from volunteers [Chklovski 2005;
Chklovski & Gil 2005]; the repository includes several
hundred paraphrases which were specifically collected to
target office- and assistant-related tasks, including: “plan a
visit schedule a visit”, “arrange a meeting schedule a
meeting”, “lease a car rent a car”. The Substeps
Repository contains knowledge such as “attending a
conference has-substep registering for the conference”, and
“go to meeting has-substep find location of meeting”, and
the sometimes true “have lunch has-substep buy food”.
This repository is based on data collected by OMCS [Singh
et al, 2002] and Learner [Chklovski, 2003]. The Repairs
Repository contains thousands of statements about objects,
their typical uses, and their parts, as well as a smaller set of
statements about repairing difficulties one may encounter in
the office environment, such as “if projector is not working,
try a new bulb” [Chklovski & Gil, 2005]. Such knowledge
can be of help in interpreting To Do entries which refer to
problems, or to action on office objects or their parts. The
Verb Relations repository, VerbOcean [Chklovski & Pantel
2004, 2005], contains more than 22,000 instances of
relations between nearly 3,500 distinct verbs, including
“schedule happens-before reschedule”, and “cancel
stronger-than postpone”. Such relations can be useful in
identifying potentially related To Do entries and their
subtasks.
BEAM also exploits ontologies and factual knowledge
bases that represent formally all the terms that the system
understands. The tasks that the system knows how to

automate are described in a Procedures Catalog, which

states the action type, the argument slots required for each
procedure, and constraints on types of the acceptable slot
values. For instance, a hotel reservation task may have as
slots the guest name the start and end dates of the stay.

Figure 1. Overview of the overall functionality of BEAM and the knowledge sources that it uses. Dotted lines indicate
knowledge sources already developed but not yet used by BEAM. Dashed lines indicate capabilities not yet developed.

To Do entries may not be actionable as they are stated, and
BEAM has the challenge of mapping entries with
incomplete arguments. For instance, arranging a lunch may
require specifying for how many people; announcing a talk
by a visitor may require the talk title and date. In these
cases, further interaction with the user is required to elicit
the additional parameters before action can be taken.

USER INTERFACE FOR TO DO LISTS
Figure 2 shows some examples of To Do list entries in the
BEAM user interface. Note that, as we mentioned earlier,
we make the assumption that To Do list entries have a verb
header followed by arguments and constraints.

Figure 2. Screenshot of BEAM’s To Do List

The To Do list items shown include: an entry that can be
fully interpreted by the system, “schedule a meeting about
Pexa during lunch,” or “calculate costs for project,” entries
that can only be partially interpreted by the system, “print
Q1 market share report,” “gather the revenue numbers,” and

 4

entries which cannot be interpreted by the system,
“presentation for the User Conference,” and
“install/reinstall accounting package.”
The first two entries, “schedule a meeting about Pexa
during lunch,” and “calculate costs for project” can be fully
interpreted because they use vocabulary covered by BEAM
and they conform to BEAM’s syntactic expectations.
The entries “print Q1 market share report” and “gather the
revenue numbers” can only be partially interpreted: while
BEAM interprets the action stated – print a document and
gather information, BEAM is not able to process in any
depth the entities that are the arguments of these actions –
what needs to be printed or gathered. In the case of “gather
the latest revenue numbers,” BEAM’s syntactic analysis
does yield that latest is an adjective modifying “revenue
numbers”, but no interpretation (mapping to a semantic
concept) is found for “revenue numbers”.
The final entries cannot be interpreted because they do not
conform to BEAM’s expectations about the input:
“presentation for the User Conference” is not in the form of
a verb with additional arguments, while “install/reinstall ac-
counting package” refers to multiple actions, and mentions
“accounting package” which has no interpretation.
Figure 3 shows an option of the BEAM interface which,
when activated, allows users to see the portions of each To
Do list entry that the system can interpret. This is a useful
feature, as studies have shown that humans adapt to the
vocabulary of another human or that of a system even if it is
different from their own. Our expectation is that this
feature will train users to stay away from using the terms
and grammatical structures which the system cannot
interpret. With this option enabled, BEAM’s processing
into the action and the arguments is displayed – eg, the first
entry is broken up into the action (schedule) and three
arguments. Also, all identified action and entity expressions
are bolded (eg, meeting, Pexa, lunch), while other lexical
items are not (eg., about, during, latest). The bolded entities
are further color-coded to indicate the interpreted actions
(schedule, calculate, print and gather), and entities
(meeting, Pexa, lunch, costs and project).

Figure 3. Screenshot of BEAM’s To Do List Showing the User
Recognized and Unrecognized Text Fragments

Figures 4 through 7 shows several aspects of the user
interface that was developed to integrate BEAM with the
execution and monitoring system (the system is described
in detail in [Myers et al 2006]). Figure 4a shows the To Do
list with several items. The last two items have been
completed and are shown with checkmarks and in italics.
The actions for which automated assistance was invoked

are marked with a “C” icon (for CALO, the automated
cognitive assistant). The third item, “plan conference
travel” has been mapped to an existing capability of the
assistant, and is being carried out. The To Do list monitors
and indicates its status.

Figure 4. A To Do interface integrating BEAM and providing

task interpretation and monitoring.

Carrying out the action may require a number of steps by
the execution and monitoring system. The user can interact
with the assistant in the execution and monitoring system,
eg, to query it about the assistant is currently working on.
This is illustrated in Figure 5.

Figure 5. Execution and monitoring system interacting with
the user about progress on task.

In the case of planning conference travel, carrying out the
action requires additional user interaction, including the
entry of missing arguments about conference deadline, etc.
The execution system can initiate additional interactions
with the user; a form-based interaction about the conference
details is illustrated in Figure 6.

 5

Figure 6. As part of its interaction, additional parameters can
be elicited from the user in the process of running the
execution and monitoring procedure.

Finally, once the task is successfully completed, the user
can monitor this in the To Do interface. The automated task
is displayed as completed, as shown in Figure 7.

Figure 7. To Do list is automatically updated when the “Plan
conference travel” action is completed.

MAPPING AND INTERPRETING TO DO LIST ENTRIES
Our approach progresses from syntactic to semantic
interpretation, and leverages a number of broad-coverage
knowledge sources. Our approach is informed by prior
work in speech systems and dialogue systems [Wang &
Acero, 2001, 2002; Seneff, 1992; Glass et al, 2004; Rich &
Sidner 1997; Allen et al, 1995, 1996, 2001]. In particular,
this work influenced the later stages of our processing,
those concerned with mapping to semantic frames and task
structures, while syntactic processing was incorporated as
early processing to allow use of growing knowledge
repositories and permit the system to function in the more
dynamic learning conditions.

Figure 8 presents an overview of the stages that we use to
map and interpret To Do list entries. There are seven
distinct stages involved in this process.
The first stage is syntactic parsing. For this stage, we rely
on Minipar, a popular dependency parser [Lin, 1998].
Minipar fit our needs because it is able to produce linkages
when text is incomplete. Using the parser in the first stage
occasionally presents some issues. For instance, a single-
word entry “schedule” or “exercise” is interpreted as a
noun, and the system is unable to interpret the entry, while
longer entries such as “schedule a phone call” or “exercise
on Tuesday” do get parsed appropriately.
The second stage is to identify semantic components in the
user utterance. This stage includes identifying which strings
express the action, the parameters, and the constraints in the
To Do entry. We have developed a set of heuristics to
process the somewhat idiosyncratic syntax of To Do
entries. An entry such as “calculate costs for project” is
processed into its semantic components: [calculate] [costs]
[for project], consisting of the action, (“calculate”) and the
phrases, each containing an entity. The direct object of the
action (eg. “costs” in the above example) is, for the sake of
our processing, a phrase with the sole entity, cost. The
entities are mapped to their basic form (for “costs”, to the
singular noun “cost”) by the parser in the previous stage.
The final component is a prepositional phrase, with the
entity being “project”. The entity is identified as the head
noun of the phrase and its nominal (but not adjectival)
modifiers, so given, for instance, the input phrase “for
urgent sales meeting”, the entity identified is “sales
meeting”.
The third stage is the lookup of known semantic
components in the ontology. The ontology for actions
consists of 85 tasks such as Buy, Learn, Obtain Data, Print.
The action from the To Do list (eg, reserve), if found, is
matched against these terms, trying both a direct match and
a match using synonyms from WordNet (Fellbaum, 1990).
The use of synonyms allows mapping of, e.g., the string
“purchase” to the concept Buy. The ontology’s set of
concepts for entities is larger, containing more than 500
concepts, including Breakfast, Bridge, Brunch, Building,
Calendar, Chair, Contact Information, etc. Again,
alignment with these concepts is carried out by attempting
both a literal and a synonym-based match.
The components which are in the execution assistant’s
ontology are identified. Semantic components which cannot
be interpreted are passed for interpretation to the next stage.
The fourth stage is the semantic interpretation of out-of-
ontology entities. This stage attempts to map terms not in
the execution assistant’s ontology to categories which are in
the ontology. For instance, the ontology may not contain
the concept of accounting package, but if the constantly
learning, broad-coverage zero-cost repositories map
“accounting package” to “software,” then tasks such as
“install accounting package” or “order accounting package”
can be fully interpreted. Currently, only a small set of

 6

concepts is available to this stage, and we plan to use much
larger repositories in this process. Similarly, if a new task is
learned by the execution assistant, little may be known
about it in the execution assistant’s ontology, and this stage
can be of help in coping with mapping of additional
concepts.

Figure 8. BEAM’s To Do List Interpretation Steps and
Knowledge Sources.

The fifth stage is the mapping to semantic frames, in which
the semantic categories of the action and the entities are
used to evoke the potentially matching semantic frames and
see if the arguments are appropriate for this semantic frame.
If the statement could not be mapped to a semantic frame,
the system checks if it is possible to rewrite the entry to a
paraphrase or subtask, as explained below. If not, the
system stops processing this statement. Recall that an
important aspect of our domain is that not all entries may
need to be interpreted by the system: the user may include
entries not done at the office, such as picking up bread on
the way home. However, if rewriting knowledge is
available, the system attempts to interpret the statement by
rewriting it.
The entry-rewriting knowledge in the current version of
BEAM is constantly growing, and it currently allows
rewriting of some actions to enable their interpretation. For
instance the action “move” when the object is “meeting” is
known as a paraphrase of “reschedule” a “meeting”. A
rewrite expression does not have to match literally – the
entry being rewritten may have additional phrases, which
are carried through.

Due to our method of collecting rewriting knowledge, we
can in some cases be highly confident in the correctness and
interpretability of the rewriting. In such cases, BEAM
rewrites matching statements even before stage 1 of
syntactic parsing. Such “aggressive rewriting” can help
avoid incorrect semantic interpretation of the original
statement. It can also serve as canonicalization of text
before parsing it, for instance rewriting “w/” to “with”.
If the mapping to semantic frame in stage five succeeded,
BEAM proceeds to the seventh (final) stage of the mapping
from semantic frames to task procedures. The semantic
frames are aligned with task procedures. In mapping to task
procedures, not that the user entry may not provide all the
needed arguments, and additional interaction or learning
may be required to identify the values of the unstated
arguments.

ACTIVATING AND MONITORING TO DO ENTRIES ON
BEHALF OF THE USER
The Procedure Catalog is BEAM’s main entry point to the
rest of the system. The catalog contains a description of all
the tasks that other components in the system can
accomplish for the user. It is organized as a task ontology,
and a complete set of the parameters required for each task
is given in terms of the system’s ontologies of objects and
classes. BEAM is integrated with the task ontology in the
sense that it aims to produce mappings to any of the tasks
described in it. However, we have focused to date on the
kinds of tasks automated by the Spark execution and
monitoring system [Morley & Myers, 2004]. Examples of
these tasks are “Schedule a meeting,” “Reschedule a
meeting,” “Create an agenda,” “Plan conference travel,”
“Register for conference,” and “Apply for reimbursement.”
Once BEAM has mapped a To Do list entry, it notifies the
user that it intends to act upon it to automate it. Then it
sends the partially instantiated request to perform that task
to Spark, which then asks the user for additional
information and parameters that do not appear in the entry
itself. BEAM also requests that Spark notifies it when the
task is completed.
Spark can monitor the progress in completing a task once it
is started. It has a Belief-Desire-Intention (BDI)
architecture that is continuously sensing its environment
and updating its beliefs accordingly. As a result, Spark can
incorporate into its reasoning the effects of actions taken by
other users or any other events registered in the system.
This enables it to detect the completion of a task by external
means, as well as suspending and canceling tasks that are
no longer desirable. BEAM is notified when a task that it
activates on behalf of the user is completed, suspended, or
cancelled.
In the coming months we envision extending this
integration more tightly with other components of the
system that can accomplish tasks and that already have
representations in the task ontology, including a calendar
manager [Berry et al 2006] and an instrumented desktop
[Cheyer et al 2005] that includes email parsing and sending

 7

capabilities. The task ontology continues to grow
automatically as end users teach new tasks to the system or
as the system learns on its own to automate repetitive tasks.

USER EVALUATIONS: PERFORMANCE WATERMARKS
While we do not present conclusive experimental results in
this paper, the overall system is undergoing a formal
evaluation with several dozen users during September and
October of 2006. The purpose of these evaluations is to test
the learning capabilities of the overall system as it is used
“in the wild” by several dozens of users. In the case of
BEAM, the goal was to obtain initial data about the
performance of the system, so we can compare it with next
year’s capabilities and demonstrate improvements. In fact,
neither the knowledge repositories nor the Procedures
Catalog are at the levels of content and coverage that we
would want to see in order to conduct more conclusive
evaluations of the effectiveness of the system. In any case,
BEAM is integrated and already attempting to interpret and
assist on every To Do list entry. It is fully instrumented,
and all the data that is being collected will inform our future
research.
BEAM is being evaluated in two experimental conditions.
The first, BEAM-Baseline, does not use automatic
rewriting and simply attempts to map To Do entries to the
Procedures Catalog. The second, BEAM-Learning, has the
functionality of the baseline system but it also performs
automatic rewriting based on the paraphrasing knowledge
that is learned from volunteers.
In the data that we have seen so far, BEAM was used on
440 statements. Without rewriting (BEAM-Baseline), a
mapping was found 23.1% of the cases. With rewriting
(BEAM-Learning), a mapping was found in 27.7% of the
cases. Although this already shows improvement, in our
case the purpose of the evaluations being conducted is to set
the watermark based on the initial capabilities of BEAM
and its integration within the overall system.

CONCLUSIONS AND FUTURE WORK
Assisting users with To Do lists is a new and challenging
research area for intelligent user interfaces. We outlined
the various kinds of intelligent assistance obtainable
through To Do list entry interpretation and automation,
including acting on entries and reporting on their
completion, adding new entries for anticipated subtasks,
grouping and prioritizing entries, and coordinating To Do
lists for joint activities across users. The central
contribution of our work is an implemented system, BEAM,
which processes To Do list entries and maps them to tasks
that a system can automate for the user. The system then
monitors the progress of the execution of those tasks and
updates the To Do list when completed. Because To Do
lists can cover many topics and tasks that may not be
formalized in the underlying system, we use a novel
approach to interpreting natural language tasks that exploits
semi-formal knowledge repositories that are broad coverage
and continuously increasing in size at zero cost. These
repositories are populated with common knowledge by web

volunteers and by automatic text extraction. BEAM has
been fully integrated within a large system that implements
various forms of assistance to users in office environments,
and can execute and monitor To Do list tasks mapped by
BEAM. An important aspect of our research is that it has
been heavily influenced by an office assistant architecture
that learns to improve performance over time. As a result,
learning is a central feature of our approach.
So far our work has focused on automating To Do list
entries, but now that we have an implemented approach to
interpret and map the To Do list entries we are very well
positioned to undertake other kinds of assistance. We plan
to extend BEAM to learn additional types of information
about tasks and improve its capabilities to assist users to
manage To Do lists. BEAM could anticipate “in-
preparation” tasks and suggest them, mark tasks as user-
only, and hypothesize groups of To Do entries that appear
related. BEAM would improve its performance in all these
tasks through collecting and exploiting additional types of
common knowledge about tasks from web volunteers. So
far, the task knowledge is collected and extracted off-line,
but there is no reason why the system should not seek
knowledge on-demand as it notices new and unknown To
Do list items.
We discussed earlier in detail the new challenges that we
face with respect to existing approaches in natural language
dialogue and speech systems, as we build on their work on
semantic grammars. An aspect we did not discuss is that
these systems must also recognize and track the progress of
a task during successive interactions with the user, and be
flexible regarding which tasks the user undertakes and
which tasks are left to the system [Rich & Sidner 1997,
Allen et al 1995, Rudnicky et al 1999]. The overall task
structure is represented formally in various forms: scripts,
task hierarchies, or intentional structures (SharedPlans).
The goal of the system is to complete as much of the task
requirements as the prior dialogue permits. To date, we
treat To Do entries as not related and their progress is
monitored separately. Tracking dialogue over time and
overall task progress have not been an issue, but we noted
grouping of tasks as a challenge early in the paper. The
approaches developed for dialogue and collaborative
systems would provide a valuable framework for work in
this direction.
To Do list assistance could greatly benefit from a larger
body of work in user interfaces on utility estimation of user
interaction and various approaches to adjustable autonomy
[Horwitz et al 1999; Maheswaran et al 2004]. There are
interesting opportunities for learning about appropriate user
interactions, about the types of assistance that are always
declined or that certain users have a much higher threshold
for accepting assistance.
We would also like to incorporate useful design criteria
suggested by user studies in cognitive psychology and
human factors regarding To Do lists. It would be useful to
integrate the To Do list functionality with calendar and

 8

email systems and automatically extract from them To Do
list entries as well as notice completed ones as the user
informs others or manipulates their calendar. Automatic
spotting and interpretation of user task statements and To
Do entries can play an important role in the future of better
integrated, more helpful office assistants.

18. J. Glass, E. Weinstein, S. Cyphers, J. Polifroni, G. Chung, and M.
Nakano, "A Framework for Developing Conversational User
Interfaces," Proc. CADUI, 354-365, Funchal, Portugal, January 2004.

19. Horvitz, E., A. Jacobs, D. Hovel. Attention-Sensitive Alerting,
Proceedings of UAI '99, Conference on Uncertainty and Artificial
Intelligence, July 1999, Morgan Kaufmann Publishers: San Francisco.
pp. 305-313.

20. Jones, S. R. and P. J. Thomas. “Empirical assessment of individuals’
‘personal information management systems’.” Behaviour &
Information Technology 16(3): 158-160. 1997

ACKNOWLEDGMENTS
We gratefully acknowledge funding for this work by
DARPA under contract no. NBCHD030010. We thank
Karen Myers and Ken Conley for their feedback on this
work and their support in integrating BEAM with the PExA
project within the CALO architecture.

21. Harrison, B. An Activity-Centric Approach To Context-Sensitive
Time Management. In CHI 2004: Workshop on the Temporal Aspects
of Work.

22. Lin, D. Dependency-based evaluation of minipar, In Proceedings of
Workshop on the Evaluation of Parsing Systems, First International
Conference on Language Resources and Evaluation. 1998.

REFERENCES 23. Maheswaran, R.; Tambe, M.; Varakantham, P.; and Myers, K. 2004.
Adjustable autonomy challenges in personal assistant agents: A
position paper. In Agents and Computational Autonomy, Lecture
Notes in Computer Science, 1994. 187–194.

1. Allen, J.F. et al, The TRAINS Project: A Case Study in Defining a
Conversational Planning Agent, Journal of Experimental and
Theoretical AI, 1995.

2. Allen, J.F., B. Miller, E. Ringger and T. Sikorski A Robust System for
Natural Spoken Dialogue, Proc. 34th Assoc. for Computational
Linguistics (ACL), 1996.

24. Miller, G. A., Ed. WordNet: An on-line lexical database. International
Journal of Lexicography 3, 4 (Winter 1990), 235-312

25. Mitchell, T., Wang, S., Huang, Y., and Cheyer, A. Extracting
Knowledge about Users' Activities from Raw Workstation Contents.
AAAI 2006.

3. J. Allen, G. Ferguson, and A. Stent. An architecture for more realistic
conversational systems. in Proceedings of Intelligent User Interfaces
2001 (IUI-01), pages 1-8, Santa Fe, NM, January 14-17, 2001. 26. Morley, D., and Myers, K. 2004. The SPARK agent framework. In

Proc. of AAMAS’04, 714–721. 4. Bellotti, V.; Ducheneaut, N.; Howard, M., Smith, I. Taking email to
task: the design and evaluation of a task management centered email
tool. ACM Conference on Human Factors in Computing Systems
(CHI 2003); NY: ACM; 2003; 345-352.

27. Myers., K., P. Berry, J. Blythe, K. Conley, M. Gervasio, D.
McGuinness, D. Morley, A. Pfeffer, M. Pollack, M. Tambe. An
Intelligent Personal Assistant for Task and Time Management. AI
Magazine, to appear. 5. Bellotti, V., B. Dalal, N. Good, P. Flynn, D. Bobrow, N. Ducheneaut.

What a To-Do: Studies of Task Management Towards the Design of a
Personal Task List Manager. CHI 2004

28. Norman, D. A. Cognitive artifacts. In J. Carroll, editor, Designing
Interaction: Psychology at the Human-Computer Interface, pages 17--
38. Cambridge University Press, New York, NY, USA, 1991. 6. Berry, P.; Conley, K.; Gervasio, M.; Peintner, B.; Uribe, T.; and

Yorke-Smith, N. Deploying a Personalized Time Management Agent.
Proceedings of AAMAS'06 Industrial Track, Hakodate, Japan, 2006.

29. Rich, C. and C. Sidner. COLLAGEN: When agents collaborate with
people. In Proceedings of the International Conference on
Autonomous Agents (Agents’97), 1997. 7. Blythe, J. Task Learning by Instruction in Tailor.

In Proc. of Intelligent User Interfaces (IUI-2005), 2005 30. Rudnicky, A., Thayer, E., Constantinides, P., Tchou, C., Shern, R.,
Lenzo, K., Xu W., Oh, A. Creating natural dialogs in the Carnegie
Mellon Communicator system. Proceedings of Eurospeech, 1999, 4,
1531-1534

8. Cheyer, A. and Park, J. and Giuli, R. IRIS: Integrate. Relate. Infer.
Share. 1st Workshop on The Semantic Desktop. ISWC 2005.

9. Chklovski, T. and Gil, Y. 2005. An Analysis of Knowledge Collected
from Volunteer Contributors. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-05)

31. Seneff, S. “TINA: A natural language system for spoken language
applications,” Computational Linguistics, 18(1), 1992.

10. T. Chklovski. 2005. Collecting Paraphrase Corpora from Volunteer
Contributors. In Proceedings of the Third International Conference on
Knowledge Capture (K-CAP 2005). 2005

32. Shen, J., Li, L., Dietterich, T., Herlocker, J. (2006). A Hybrid
Learning System for Recognizing User Tasks from Desktop Activities
and Email Messages. In 2006 International Conference on Intelligent
User Interfaces (IUI). 86-92. Sydney, Australia. 11. T. Chklovski, P. Pantel. 2004. VerbOcean: Mining the Web for Fine-

Grained Semantic Verb Relations. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP-04).

33. Singh, P., T. Lin, E. Mueller, G. Lim, T. Perkins, and W.L. Zhu
(2002). Open Mind Common Sense: Knowledge acquisition from the
general public. Proceedings of the First International Conference on
Ontologies, Databases, and Applications of Semantics for Large Scale
Information Systems. Lecture Notes in Computer Science. Heidelberg:
Springer-Verlag.

12. T. Chklovski, P. Pantel. 2005. Global Path-based Refinement of Noisy
Graphs Applied to Verb Semantics. In Proceedings of The Second
International Joint Conference on Natural Language Processing
(IJCNLP-05), Jeju Island, South Korea, 2005

34. Y. Wang and A. Acero. Grammar Learning for Spoken Language
Understanding, in Proc. of the IEEE Workshop on Automatic Speech
Recognition and Understanding. Madonna di Campiglio, Italy, 2001.

13. T. Chklovski. LEARNER: A System for Acquiring Commonsense
Knowledge by Analogy. Proceedings of Second International
Conference on Knowledge Capture (K-CAP 2003). 2003.

35. Y. Wang, A. Acero. Evaluation of Spoken Language Grammar
Learning in the ATIS Domain, in Proc. of the Int. Conf. on Acoustics,
Speech, and Signal Processing. Orlando, Florida, May, 2002.

14. G. Chung, S. Seneff, and C. Wang, "Automatic Induction of Language
Model Data for a Spoken Dialogue System," Proc. SIGDIAL, 2005.

15. A Dey, G Abowd. CybreMinder: A Context-Aware System for
Supporting Reminders. HUC, 2000 36. W. Ward. Understanding Spontaneous Speech: the PHOENIX System.

In Proceedings International Conference on Acoustics, Speech, and
Signal Processing, pages 365-68, Toronto, 1991.

16. Fillmore, C.J.: ‘‘The Case for Case,’’ in Bach and Harms (Eds.),
Universals in Linguistic Theory, 1969

17. M. Gavalda and A. Waibel. Growing semantic grammars. In
Proceedings of the COLING/ACL, Montreal, Canada, 1998.

 9

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	INTRODUCTION
	INTELLIGENT ASSISTANCE FOR TO DO LISTS
	NEW CHALLENGES
	APPROACH
	USER INTERFACE FOR TO DO LISTS
	MAPPING AND INTERPRETING TO DO LIST ENTRIES
	ACTIVATING AND MONITORING TO DO ENTRIES ON BEHALF OF THE USER
	USER EVALUATIONS: PERFORMANCE WATERMARKS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

